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ABSTRACT
Financial speculators often seek to increase their potential

gains with leverage. Debt is a popular form of leverage, and

with over 39.88B USD of total value locked (TVL), the Decen-

tralized Finance (DeFi) lending markets are thriving. Debts,

however, entail the risks of liquidation, the process of selling

the debt collateral at a discount to liquidators. Neverthe-

less, few quantitative insights are known about the existing

liquidation mechanisms.

In this paper, to the best of our knowledge, we are the first

to study the breadth of the borrowing and lending markets of

the EthereumDeFi ecosystem.We focus on Aave, Compound,

MakerDAO, and dYdX, which collectively represent over 85%

of the lending market on Ethereum. Given extensive liqui-

dation data measurements and insights, we systematize the

prevalent liquidation mechanisms and are the first to provide

a methodology to compare them objectively. We find that

the existing liquidation designs well incentivize liquidators

but sell excessive amounts of discounted collateral at the bor-

rowers’ expenses. We measure various risks that liquidation

participants are exposed to and quantify the instabilities of

existing lending protocols. Moreover, we propose an optimal

strategy that allows liquidators to increase their liquidation

profit, which may aggravate the loss of borrowers.

1 INTRODUCTION
Cryptocurrencies are notoriously known to attract financial

speculators who often seek to multiply their potential mone-

tary upside and gains through leverage. Leverage is realized

by borrowing assets to perform trades — commonly referred

to as margin trading. It is apparent that margin trading, spec-

ulating with borrowed assets in general, is an incredibly

risky endeavor. Yet, the borrowing and lending markets on

blockchains are thriving and have reached a collective 39.88B

USD of total value locked (TVL) at the time of writing.

Loan on a blockchain typically works as follows. Lenders

with a surplus of money provide assets to a lending smart

contract. Borrowers then provide a security deposit, known

as collateral, to borrow cryptocurrency. Because lending

and borrowing on blockchains typically does not involve a

credit check or know your customer (KYC) verifications, the
amounts of debt borrowers can take on is always inferior to

the security deposit — resulting in over-collateralized loans.
Over-collateralized loans are interesting from a financial

perspective, as they enable borrowers to take on leverage.

If the collateral value decreases under a specific threshold

(e.g., below 150% of the debt value [19]), the associated debt

can be recovered through three means: (1) a loan can be

made available for liquidation by the smart contract. Liq-

uidators then pay back the debt in exchange for receiving

the collateral at a discount (i.e., liquidation spread), or the
collateral is liquidated through an auction. (2) Debt can also

be rescued by “topping up” the collateral, such that the loan

is sufficiently collateralized. (3) Finally, the borrower can

repay parts of their debt. While users can repay their debts

manually, this appears impractical for the average user, as it

requires infrastructure to constantly monitor the blockchain,

collateral price, and transaction fee fluctuations. For example,

even professional liquidation bots from MakerDAO failed

to monitor and act upon price variations during blockchain

congestion [1].

In this paper we make the following contributions.

(1) LiquidationModels and Insights:We provide the first

longitudinal study of the four major lending platforms

MakerDAO, Aave, Compound, and dYdX, capturing col-

lectively over 85% of the borrowing/lending market on

the Ethereum blockchain. By focusing on the protocol’s

liquidation mechanisms, we systematize their liquidation

designs. MakerDAO, for instance, follows an auction-

based liquidation process, while Aave, Compound, and

dYdX operate under a fixed spread liquidation model.
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(2) DataAnalytics:We provide on-chain data analytics cov-

ering the entire existence of the four protocols (2 years).

Our findings show how the accumulative liquidation pro-

ceeds amount to 807.46M USD, we identify 2,011 unique

liquidator addresses and 28,138 liquidation events, of

which 641 auction liquidations are not profitable for the

liquidators. We show how 73.97% of the liquidations pay

an above average transaction fee, indicating competi-

tive behavior. We find the existence of bad debts, the

borrowing positions that do not financially incentivize

borrowers to perform a close. Notably, Aave V2 has ac-

cumulated up to 87.4K USD of bad debts by the end of

April, 2021. We quantify how sensitive debt behaves to

collateral price declines and find that, for example, a 43%

reduction of the ETH price (analogous to the ETH price

decline on the 13th of March, 2020) would engender liq-

uidatable collateral volume of 1.07B USD on MakerDAO.

(3) Objective LiquidationMechanismComparison:We

provide amethodology to compare quantitativelywhether

a liquidation mechanism favors a borrower or a liquida-

tor. We find evidence that fixed spread liquidation mech-

anisms favor liquidators over borrowers. That is, because

existing DeFi systems are parameterized to allow more

collateral than necessary to be liquidated.

(4) Optimal Fixed Spread Liquidation Strategy:We pro-

pose an optimal fixed spread liquidation strategy. This

strategy allows liquidators to lift the restrictions of the

close factor (the upper limit of liquidated assets in a single

liquidation, cf. Section 2.2) within two successive liquida-

tions. We provide a case study of a past liquidation trans-

action and show that the optimal strategy could have in-

creased the liquidation profit by 53.96K USD (1.36%), val-

idated through concrete execution on the real blockchain

state. This optimal strategy can further aggravate the

loss of borrowers.

The remainder of the paper is organized as follows. Sec-

tion 2 outlines the background on blockchain and lending,

while we systematize existing liquidation mechanisms in

Section 3. Section 4 provides liquidation data insights from

empirical data. We discuss how to objectively compare liqui-

dation mechanisms and the optimal liquidation strategy in

Section 5. We outline related work in Section 6 and conclude

the paper in Section 7.

2 LENDING ON THE BLOCKCHAIN
Weproceed by outlining the required background on blockchain

and DeFi for the remainder of the paper.

2.1 Blockchain & DeFi
Blockchains [25] are distributed ledgers that enable peers

to transact without the need to entrust third-party interme-

diaries. At its core, a blockchain is a hash-linked chain of

blocks [11], where miners form blocks as a data-structure ag-

gregating transactions. We refer the reader to the following

SoK’s for a more thorough background on blockchains [10,

11]. Blockchains with generic computation capabilities (e.g.,

Ethereum [34]) support smart contracts through quasi Turing-

complete virtual machines [8]. Smart contracts allow the

construction of sophisticated on-chain financial systems,

namely Decentralized Finance (DeFi). At the time of writing,

Ethereum is the dominating permissionless blockchain host-

ing DeFi. The DeFi ecosystem on Ethereum reached a TVL

of over 80B USD, with more than 50% contributed by lend-

ing protocols. In the following, we introduce the essential

components of DeFi that are relevant to lending protocols.

2.1.1 Price Oracle. Because lending protocols aim to liqui-

date collateralized assets upon collateral price declines, the

lending smart contract is required to know the price of the

collateral asset. Prices can either be provided through an on-

chain oracle, such as smart contract based exchanges (e.g.,

Uniswap [33]), or via an off-chain oracle (such as Chain-

link [31]). On-chain price oracles are known to be vulnerable

to manipulation [28].

2.1.2 Flash Loan. The atomicity of blockchain transactions

(executions in a transaction collectively succeed or fail) en-

ables flash loans. A flash loan represents a loan that is taken

and repaid within a single transaction [6, 28]. A borrower is

allowed to borrow up to all the available assets from a flash

loan pool and execute arbitrary logic with the capital within

a transaction. If the loan plus the required interests are not

repaid, the whole transaction is reverted without incurring

any state change on the underlying blockchain (i.e., the flash

loan never happened). Flash loans are shown to be widely

used in liquidations [28].

2.1.3 Stablecoin. Stablecoins are a class of cryptocurrencies
designed to provide low price volatility [12]. The price of a

stablecoin is generally pegged to some reference point (e.g.,

USD). The typical stablecoin mechanisms are reserve of the

pegged asset (e.g., USDT and USDC), loans (e.g., DAI), dual

coin, and algorithmic supply adjustments [24].

2.2 Terminology
We adhere to the following terminologies in this paper.

Loan/Debt: Aborrower, secured by a collateral deposit, tem-

porarily takes capital from a lender. The collateral is the

insurance of the lender against defaults.
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Interest Rate: A loan is repaid by repaying the lent amount,

plus a periodic percentage of the loan amount. The inter-

est rate can be governed by the scarcity/surplus of the

available asset supply within the lending smart contract.

Over/Under-collateralization: Blockchain based loans are
typically over-collateralized, i.e., the borrower has to pro-

vide collateral assets of higher total value than the granted

loan. A loan is under-collateralized, when the value of the

collateral is inferior to the debt.

Position: In this work, the collateral and debts are collec-

tively referred to as a position. A position may consist of

multiple-cryptocurrency collaterals and debts.

Liquidation: In the event of a negative price fluctuation

of the debt collateral (i.e., a move below the liquidation

threshold), a position can be liquidated. In permissionless

blockchains, anyone can repay the debt and claim the

collateral.

Liquidation Threshold (LT): Is the percentage at which

the collateral value is counted towards the borrowing

capacity (cf. Equation 3).

Liquidation Spread (LS): Is the bonus, or discount, that

a liquidator can collect when liquidating collateral (cf.

Equation 1). This spread incentivises liquidators to act

promptly once a loan crosses the liquidation threshold.

𝑉𝑎𝑙𝑢𝑒 𝑜 𝑓 𝐶𝑜𝑙𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑡𝑜 𝐶𝑙𝑎𝑖𝑚

= 𝑉𝑎𝑙𝑢𝑒 𝑜 𝑓 𝐷𝑒𝑏𝑡 𝑡𝑜 𝑅𝑒𝑝𝑎𝑦 × (1 + LS) (1)

Close Factor (CF): Is the maximum proportion of the debt

that is allowed to be repaid in a single liquidation.

Collateralization Ratio (CR): Is the ratio between the to-

tal value of collateral and debt (cf. Equation 2) where 𝑖

represents the index of collateral or debt if the borrower

owns collateral or owes debt in multiple cryptocurrencies.

CR =

∑
𝑉𝑎𝑙𝑢𝑒 𝑜 𝑓 𝐶𝑜𝑙𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝑖∑

𝑉𝑎𝑙𝑢𝑒 𝑜 𝑓 𝐷𝑒𝑏𝑡𝑖
(2)

A debt is under-collateralized if CR < 1, otherwise the

debt is over-collateralized.

Borrowing Capacity (BC): Refers to the total value that a

borrower is allowed to request from a lending pool, given

its collateral amount. For each collateral asset 𝑖 of a bor-

rower, its borrowing capacity is defined in Equation 3.

BC =
∑︁

𝑉𝑎𝑙𝑢𝑒 𝑜 𝑓 𝐶𝑜𝑙𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝑖 × LT𝑖 (3)

Health Factor (HF): The health factor measures the collat-

eralization status of a position, defined as the ratio of the

borrowing capacity over the outstanding debts (cf. Equa-

tion 4).

HF =
BC∑

𝑉𝑎𝑙𝑢𝑒 𝑜 𝑓 𝐷𝑒𝑏𝑡𝑖
(4)

Price Oracle

Lending PoolLenders / Borrowers

Collateralize / Withdraw

Liquidators

Atomic Liquidation
Non-atomic Liquidation
(a) Initiate Liquidation
(b) Operations
(c) Finalize Liquidation

Feed Price

Borrow / Repay

Figure 1: High-level system diagram of a lending pool
system.

If HF < 1, the collateral becomes eligible for liquidation.

3 SYSTEMATIZATION OF LENDING AND
LIQUIDATION PROTOCOLS

In this section, we systematize how the current borrowing

mechanisms and their specific liquidation processes operate.

3.1 Borrowing and Lending System Model
The following aims to summarize the different actors engag-

ing in borrowing and lending on a blockchain (cf. Figure 1).

A lender is an actor with surplus capital who would like

to earn interest payments on its capital by lending funds to

a third party, e.g., a borrower.

A borrower provides collateral to borrow assets from a

lender. The borrower is liable to pay regular interest fees to

the lender (typically measured as percentage of the loan).

As lending in blockchains is typically performed without

KYC, the borrower has to collateralize a value that is greater

than the borrowed loan. In pure lending/borrowing plat-

forms such as Aave, Compound and dYdX, the collateral

from borrowers is also lent out as loans. Borrowers hence

automatically act as lenders.

While lending could be performed directly on a peer-to-

peer basis, blockchain-based lending protocols often intro-

duce a lending pool governed by a smart contract. A pool

can hold several cryptocurrencies, and users can interact

with the pool to deposit or withdraw assets according to the

rules defined by the smart contract.

A liquidator observes the blockchain for unhealthy posi-

tions (i.e., the health factor is below 1) to be liquidated. Liq-

uidators typically operate bots, i.e., automated tools which

perform a blockchain lookup, price observation, and liqui-

dation attempt, if deemed profitable. Liquidators are engag-

ing in a competitive environment, where other liquidators

may try to front-run each other [13]. Notably, an atomic

liquidation (e.g., a fixed spread liquidation) is settled in one
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blockchain transaction, while non-atomic liquidation mecha-

nisms (e.g., auctions) generally require liquidators to interact

with the lending pool in multiple transactions.

3.2 Systematization of Liquidation
Mechanisms

We observe that existing lending platforms mainly adopt two

distinct liquidation mechanisms. One mechanism is based

on a non-atomic English auction [23] process, and the other

follows an atomic fixed spread strategy. We formalize the

two existing dominating mechanisms as follows.

3.2.1 Auction Liquidation. An auction based liquidationmech-

anism follows the subsequent methodology:

(1) A loan becomes eligible for liquidation (i.e., the health

factor drops below 1).

(2) A liquidator starts the auction process (which can last

several hours).

(3) Interested liquidators provide their bids (e.g., the high-

est bid receives the loan collateral).

(4) The auction ends according to the rules set forth in

the auction contract.

tend dent
auction length

Initiate Terminate

bid —— 

Finalize

Figure 2: Two-phase liquidation auction ofMakerDAO.
Any actor can invoke the public function bite to initi-
ate the collateral auction and invoke the public func-
tion deal to finalize the liquidation after the auction
terminates.

MakerDAO tend-dent auction. Specifically, MakerDAO em-

ploys a two-phase auction process, which we term tend-dent
auction (cf. Figure 2). When a position with 𝐷 value of debt

and𝐶 value of collateral is eligible for liquidation, i.e.,HF < 1,

a liquidator is able to initiate the tend-dent auction. A liq-

uidator is required to bid at a higher price than the last bid in

the auction. The two-phase workflow is described as follows.

Tend: In the tend phase, liquidators compete by bidding to

repay parts of the debt in exchange for the entire collateral.

We denote the amount of debt committed to repay in

each bid by 𝑑𝑖 , s.t. 𝑑𝑖 ≤ 𝐷 and 𝑑𝑖 > 𝑑𝑖−1. If the auction
terminates in the tend phase, the winning bidder receives

all the collateral (i.e., 𝐶). When 𝑑𝑖 reaches 𝐷 , the auction

moves into the dent phase.
Dent: In the dent phase, liquidators compete by bidding

to accept decreasing amounts of collateral in exchange

for the full debt (i.e., 𝐷) they will end up repaying. We

denote the amount of collateral committed in each bid by

𝑐𝑖 , s.t. 𝑐𝑖 ≤ 𝐶 and 𝑐𝑖 < 𝑐𝑖−1. The winning bidder repays

the full debt and receives the partial collateral (denoted by

𝑐win). The remaining collateral (i.e., 𝐶 − 𝑐win) is returned
to the position owner (i.e., the borrower).

The auction terminates when any one of the following two

conditions is satisfied. Note that the auction can terminate

in the tend phase.

(1) Auction Length Condition: the configurable auc-

tion length (e.g., 6 hours) has passed since the initiation

of the auction.

(2) Bid Duration Condition: the configurable bid dura-

tion (e.g., 5 hours) has passed since the last bid.

After the termination of an auction, the winning liquidator

is allowed to finalize the liquidation to claim the proposed

collateral.

3.2.2 Fixed Spread Liquidation. Instead of allowing multiple

liquidators to bid over a time-frame, a liquidatable loan can

be instantly liquidated with a pre-determined discount (cf.

Figure 1). Aave, for instance, allows liquidators to purchase

the loan collateral at up to a 15% discount of the current

market price. This discount, or liquidation spread, is known

upfront, and the liquidators can hence locally decide whether

to engage in a liquidation opportunity. Following a fixed

spread model avoids hour-long liquidation auctions, which

cost time and transaction fees. Liquidators, moreover, can

choose to liquidate collateral with the use of atomic flash

loans [28]. While flash loans increase the transaction costs

of the liquidators, they reduce the currency exposure risk of

holding the assets required for liquidation.

Fixed Spread Liquidation Example. In the following, we

provide an example of a fixed spread liquidation:

(1) Currency values:We assume an initial price of 3,500

USD/ETH.

(2) Collateral Deposit:Auser deposits 3 ETH, and hence

has 10,500USD worth of collateral. If we assume a liq-

uidation threshold (LT, cf. Section 2.2) of 0.8, the result-
ing borrowing capacity of the user isBC = 10,500USD×
LT = 8,400USD.

(3) Borrowing: In the next step the user borrows, for

instance, 8,400USDC worth 8,400USD.

(4) ETH price decline: We now assume that the ETH

value declines to 3,300USD/ETH, which means that

the collateral value declines to 9,900USD with BC =

7,920USD. The price oracle updates the ETH price on

the lending smart contract. The health factor of the

loan now drops to HF =
7,920USD
8,400USD

≈ 0.94 < 1 and thus

the collateral is available for liquidation.

(5) Liquidation: A liquidator submits a liquidation trans-

action to repay 50% (close factor CF, cf. Section 2.2)
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of the debt, i.e., 4,200USDC. In return, the liquida-

tor is allowed to purchase collateral at the price of

3,300USD/ETH
1+LS = 3,000USD/ETH (we assume that the

liquidation spread LS is 10%, cf. Section 2.2). In this

liquidation, the liquidator receives
4,200USD

3,000USD/ETH ×3,300
USD/ETH = 4,620USD worth of ETH and realizes a

profit of 420USD.

3.3 Studied Lending Protocols
Within this work we focus on the biggest lending proto-

cols, measured by total value locked, notably MakerDAO

(12.49B USD), Aave (11.20B USD), Compound (10.15B USD),

and dYdX (247.6M USD).

Aave is a pool-based lending and borrowing protocol [4].

Lenders deposit assets into a pool governed by open-source

smart contracts, and borrowers can then take loans out of

this pool. The interest rate of an Aave pool is decided algo-

rithmically by the smart contract and depends on the avail-

able funds within the lending pool. The more users borrow

an asset, the higher its interest rate rises. A lending pool

can consist of several cryptocurrency assets, for instance

ETH, DAI, and USDC. In Aave, when the health factor drops

below 1, any liquidator can call the public pool function liq-
uidationCall, by repaying parts or all of the outstanding debt,
while profiting from the liquidation spread. Aave specifies

that only a maximum of 50% of the debt can be liquidated

within one liquidationCall execution (referred to as a close

factor). The liquidation spread on Aave ranges from 5% to

15%, depending on the considered markets. Aave bases its

pricing feed on the external Chainlink oracle [31]. Aave was

upgraded to a newer version in December 2020 while the

core protocols remained nearly unchanged. In this work, we

distinguish the two versions with Aave V1 and Aave V2.

Compound [18] launched before Aave and operates in

a similar fashion. Users deposit assets and earn interests

based on the amount of interests paid by borrowers. When

a borrower exceeds the borrowing capacity, at most 50% of

outstanding debt can be repaid at once by a liquidator (same

as the close factor in Aave). The liquidation may continue

until the collateral guarantees a health factor superior to

one. The liquidator in exchange receives the collateral at the

current market price minus the liquidation spread discount.

dYdX [16] is divided into two sub-protocols, one for trad-

ing, borrowing, lending and one that also supports futures

markets. Similar to Aave and Compound, dYdX operates at

a fixed spread of 5% for the WETH/USDC, WETH/DAI and

USDC/DAI markets, at the time of writing. dYdX’s close fac-

tor is 100%, allowing the liquidators to liquidate the entire

collateral within one liquidation.

Contrary to the aforementioned borrowing/lending proto-

cols, MakerDAO provides a decentralized stablecoin called
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Figure 3: From the inception of each considered lend-
ing protocol, we plot the accumulative collateral sold
through liquidation (April, 2019 to April, 2021).

DAI that is pegged to the US dollar, while still function-

ing financially similar to a borrowing/lending platform. A

user can collateralize at least, e.g., 150% of a crypto asset

(for instance ETH) to mint 100% DAI. Creating DAI opens

a so-called collateralized debt position (CDP), which can be

liquidated if the collateralized value drops below the fixed

collateralization ratio. MakerDAO adopts an auction-based

liquidation mechanism (cf. Section 3.2).

4 LIQUIDATION INSIGHTS
By observing the publicly readable Ethereum blockchain we

compiled the following insights on liquidation events.

4.1 Measurement Setup
We gather our data by crawling blockchain events (e.g., liq-

uidation events) and reading blockchain states (e.g., oracle

prices) from an Ethereum full archive node, on an AMD

Ryzen Threadripper 3990X with 64 cores, 256 GB of RAM

and 2×8 TB NVMe SSD in Raid 0 configuration. We build our

own custom Ethereum client based on the golang-based geth

client
1
to execute transactions on a specific block when nec-

essary. For instance, in Section 5.2, we validate our optimal

fixed spread liquidation strategy through concrete execu-

tions on past blockchain states.

4.2 Overall Statistics
In total, we observe 28,138 successful liquidations from the

inception
2
of the four platforms to block 12344944, the last

block in the month of April, 2021. We normalize the values

of different cryptocurrencies to USD according to the prices

given by the platforms’ on-chain price oracles at the block

1
https://github.com/ethereum/go-ethereum

2
The inception blocks of Aave, Compound, dYdX and MakerDAO

are 9241022, 7710733, 7575711 and 8040587 respectively.
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Figure 4: Monthly accumulated liquidator profit. We observe an outlier for MakerDAO in March, 2020, because
the MakerDAO liquidation bots were faulty due to an excessive price decline of ETH. The outlier for Compound
in November, 2020 is caused by an irregular price reported by a price oracle.

when the liquidation is settled. We crawl this data on-chain,

and do not rely on an external price oracle, or API.

In Figure 3, we present the accumulative collateral sold

through liquidation in terms of USD. The overall liquidated

collateral on the four platforms Aave, Compound, dYdX, and

MakerDAO accumulates to a total of 807.46MUSD.We notice

an increase on Compound in November, 2020. This is caused

by an irregular DAI price provided by the Compound price

oracle, which triggers a large volume of cryptocurrencies to

be liquidated [2]. Another remarkable boost on Compound

in February, 2021 is caused by the drastic fluctuations in

prices of cryptocurrencies [3].

4.3 Incentives and Participation
In the following, we measure how liquidators are incen-

tivized to perform liquidations and elaborate on the status

quo of liquidator participation.

4.3.1 Liquidator Profit & Loss. To measure the profit of each

liquidation event, we assume that the purchased collateral is

immediately sold by the liquidator at the price given by the

price oracle. The total profit by the 28,138 liquidations sums

up to a total of 63.59M USD. To better understand the tem-

poral evolution of liquidation profits, we show the monthly

collective profit yielded from each platform in Figure 4.

MakerDAO notably shows an outlier in March, 2020, when

the MarkerDAO monthly profit reached 13.13M USD. This

outlier is due to the Ethereum network congestion caused by

the 43% ETH price market collapse on March 13th 2020 [1].

The liquidation bots were not acting accordingly, which

caused the liquidation transactions to not be swiftly included

in the blockchain. This delay allowed other capable liquida-

tors to manually win the MakerDAO auctions at a negligible

cost. In November, 2020, an irregular DAI price provided

by the Compound price oracle [2] allowed liquidators to

profit in total 8.38M USD. We also observe that Compound

contributes a strong liquidation profit of 9.61M USD in Feb-

ruary, 2021, which, however, does not seem related to any

bot failure or oracle irregularity.

To study the number of liquidators, we assume that each

unique Ethereum address represents one liquidator. We then

identify a total of 2,011 unique liquidators. On average the

liquidators yield a profit of 31.62K USD each. We show the

number of liquidators and their average profit on the four

considered platforms in Table 1. Remarkably, the most active

liquidator performs 2,482 liquidations alone, which yield a

total profit of 741.75K USD. The most profitable liquidator

generates 5.84M USD in only 112 liquidations.

We also discover 641 MakerDAO liquidations that are not

profitable and incur a total loss of 467.44K USD. After manu-

ally inspecting those non-profitable liquidation transactions,

we can confirm that the liquidation losses are caused by

collateral price fluctuations during the auctions.

4.3.2 Fixed Spread Liquidations. We observe 3,809, 1,039,

6,766 and 9,762 settled liquidations on Aave V1, Aave V2,

Compound and dYdX respectively.

Liquidator Participation. In Figure 5, we show the gas price

of every fixed spread liquidation transaction along with the

average gas price. Note that we show the 6000-block moving

average of the block gas pricemedians in the figure to smooth

the curve for readability. The data in Figure 5 shows that
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Figure 5: Gas prices paid by liquidators.We also report the 6000-blocks (1 day)moving average of the blockmedian
measured on-chain. Interestingly, several liquidations are below the average gas price. We notice a gas price spike
in March, 2020 because of a collapse of ETH price [1]. There is an uptrend of gas price since May, 2020 due to the
growing popularity of DeFi.

Table 1: Number of the liquidations and liquidators on
Aave, Compound, dYdX, MakerDAO and their average
profit.Wemeasure the number of liquidators based on
their unique Ethereum address. We notice that some
liquidators operate on multiple lending markets.

Platform Liquidations Liquidators Average Profit

Aave V1 3,809 665 10.76K USD

Aave V2 1,039 125 43.12K USD

Compound 6,766 657 39.94K USD

dYdX 9,762 600 14.30K USD

MakerDAO 6,762 140 115.84K USD

Total 28,138 2,011 31.62K USD

many liquidators pay significant gas fees (the y-axis is a log

scale). We find that 73.97% of the liquidations pay an above

average transaction fee, and hence allows the conclusion

that liquidation events are competitive.

4.3.3 Auction Liquidations. Out of the recorded 6,762Maker-

DAO liquidations, 3,377 auctions terminate in the tend phase

and the other 3,385 auctions terminate in the dent phase. The

average number of bidders participating in a liquidation is

only 1.99. We notice that 2.63 ± 1.96 bids (1.58 ± 0.95 tend
bids and 1.06 ± 1.62 dent bids), are placed per auction.

Duration. We define the duration of a MakerDAO liqui-

dation auction, as the time difference between the auction

initiation and finalization. To capture time, we resort to the

block timestamps. We visualize the duration of the Maker-

DAO liquidations in Figure 6. On average, an liquidation

lasts for 2.06 ± 6.43 hours (mean±standard deviation). There

are 4,173 auctions terminating within one hour. We observe
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Figure 6: Duration of the MakerDAO liquidations. In-
terestingly, auctions last longer than they’re config-
ured to. We can observe a change in system auction
parameters after the 13thMarch, 2020 event (the Mak-
erDAO liquidation incident).

that few liquidations last longer than intended, which can be

explained by that fact that the respective liquidators did not fi-

nalize the auction and hence didn’t claim the liquidation pro-

ceeds. For example, the longest auction lasts for 346.67 hours,

while its last bid is placed 344.60 hours prior to the termina-

tion.

Bid Intervals. To better understand the bidding process of

the various liquidators, we study the number of bids, and

their respective intervals. We note that the first bid is placed

on average 4.12 ± 25.52 minutes after the auction initiation.

Given that an auction can last several hours, it appears that

most bidders engage early in the auction process. We observe

that 4,537 auctions terminate with more than one bid placed.
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It also appears that bids come close together, as the average

interval between bids is 38.97 ± 89.34 minutes.

4.4 Risks
We proceed to discuss the risks that the participants of a

lending pool (i.e., borrowers, lenders and liquidators) bear

due to liquidations.

4.4.1 The Problem of Over-Liquidation. We observe that the

liquidation mechanisms of Aave and Compound grant a

liquidator the right to liquidate up to 50% of the collateral (i.e.,

the close factor) once a debt’s health factor falls below 1. dYdX

even allows a liquidator to purchase 100% of the collateral at

the fixed spread discount.

Such design decision favor the liquidators over the bor-

rowers, as a debt can likely be rescued by selling less than

50% of its value. Choosing an appropriate close factor is chal-

lenging, because the liquidation mechanism should minimize

the number of liquidation events and overall transactions

due to the limited transaction throughput of blockchains.

Auction mechanisms do not specify a close factor and

hence offer a more granular method to liquidate collateral.

In return, auction liquidators are exposed to the risk of loss

due to the price fluctuations of the collateral during the liqui-

dation (cf. Appendix A). The MakerDAO tend-dent auction,

is to the best of our knowledge, the only auction mecha-

nism that is widely adopted in blockchain liquidations. Yet,

the liquidation bots must remain robust and vigilant under

blockchain congestion, otherwise the borrowers may endure

excessive losses [1]. Some alternative auction mechanisms

(e.g., Vickrey auction [9] and Dutch reverse auctions [21])

may have potential in mitigating the over-liquidation prob-

lem and could prove more resilient to network congestion.

We leave an objective comparison of different auction de-

signs for future work.

4.4.2 Bad Debts. We define a borrowing position as a bad

debt if it is financially rationale for neither the borrowers nor

the lending platform to close the position. In the following

we introduce two types of bad debts.

(1) Type I bad debt (Under-collateralized position):
If the collateral value falls below the value of the debt,

then either the borrower or the lending platform will

suffer a loss if the corresponding position is closed.

Type I bad debt is typically caused by overdue liquida-

tions. An overdue liquidation can, e.g., occur when the

collateral/debt asset suffers a severe price fluctuation

or the blockchain network is congested.

(2) Type II bad debt (ExcessiveTransaction Fees):When

an over-collateralized position is closed, the borrower

will regain the excess asset used for over-collateralization.

However, if the value of the excess asset cannot cover

Table 2: Statistics of Type I/II bad debts on Aave, Com-
pound and dYdX at block 12344944 (30th Apr 2021).
For instance, if it costs 100USD for a borrower to repay
its debt, then 2, 550 (32.0%) of the lending position are
classified as Type II bad debts on Compound, which
causes 14.3K USD collateral value to be locked.

Type I Type II

Transaction fee - ≤ 10 USD ≤ 100 USD

Aave V2

28 (0.5%)

25,379 USD collateral

102 (1.9%)

4,793 USD collateral

255 (4.7%)

62,017 USD collateral

Compound

333 (4.2%)

27,473 USD collateral

1,681 (21.1%)

675 USD collateral

2,550 (32.0%)

14,399 USD collateral

dYdX -

411 (36.3%)

1,287 USD collateral

720 (63.5%)

18,019 USD collateral

Table 3: Statistics of unprofitable liquidation opportu-
nities onAave, Compound anddYdXat block 12344944
(30th Apr 2021). For instance, Aave configures a 50%

liquidation threshold with at most 15% liquidation
spread. Based on our measurement, at least 59.1% of
the Aave liquidation opportunities are not profitable
if the liquidation process costs 100.

Transaction Fee ≤ 10 USD ≤ 100 USD

Aave V2 LT = 50%, LS ≤ 15%

≥ 6 (27.2%)

398 USD collateral

≥ 13 (59.1%)

3,404 USD collateral

Compound LT = 50%, LS = 8%

325 (14.8%)

34,025 USD collateral

350 (15.9%)

125,722 USD collateral

dYdX LT = 100%, LS = 5% - -

the transaction fee, then there is no incentive for the

borrower to repay and close this position.

Because the value of the debt plus transaction fee is su-

perior to the value of the bad debt collateral, repaying bad

debt is not a financially rational endeavor for a borrower.

The accumulation of bad debt reduces the total liquidity in a

lending protocol, which necessarily leads to higher interest

rates for borrowers. If the lending pool maintains exclusively

bad debts, lenders will not be able to withdraw funds.

In the following we quantitatively measure the amount of

bad debts present in existing lending protocols. To that end,

we first have to assume a somewhat random cost which a bor-

rower would need to bear, when repaying debt. For the sake

of the example here, we choose a cost of 100 USD to repay

the debt, and consider the blockchain state at block 12344944

(30th Apr 2021). Given this cost, we have identified in to-

tal 351/3,525 Type I/II bad debts (cf. Table 2). Remarkably, the

liquidity of Aave V2 is reduced by 87.4K USD due to existing

bad debts. It is worth mentioning that dYdX does not have

any Type I bad debt at block 12344944. This is, because dYdX

apparently uses an external insurance fund, to write off bad

debts of Type I.
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4.4.3 Unprofitable Liquidations. We define a liquidation op-

portunity as unprofitable if the bonus collected by the liq-

uidator cannot cover the transaction fee. Unprofitable liqui-

dations imply that the lending position’s health cannot be

restored in time, which necessarily leads to an accumulation

of Type I bad debt. We measure the number of unprofitable

liquidation opportunities in Table 3. Given the average trans-

action fee at the time of writing, we choose a transaction

cost of 100 USD for a single liquidation. Remarkably, by

block 12344944 (30th Apr 2021), we have identified 350 un-

profitable liquidation opportunities on Compound, which

corresponds to 125,722 USD worth of collateral. Rational

liquidators will not attempt to liquidate unprofitable lending

positions. Therefore, these positions will inevitably become

Type I bad debts, if their health factor continues to fall.

4.4.4 Flash Loan Usages. Fixed spread liquidations can be

conducted in one transaction alone, which reduces the com-

plexity and risk for the liquidators. For instance, liquidators

do not need to hold any assets ready to repay debt for a

liquidation. Instead, the liquidators can resort to flash loan

pools, lend the required capital to repay debt, and pay back

the flash loan interests by the end of the liquidation call. A

typical flow of a flash loan liquidation works as follows:

(1) The liquidator borrows a flash loan in currency 𝑋 to

repay the debt.

(2) The liquidator repays the borrower’s debt with a flash

loan and receives collateral in currency 𝑌 at a pre-

mium.

(3) The liquidator exchanges parts of the purchased col-

lateral in exchange for currency 𝑋 .

(4) To conclude the flash loan, the liquidator repays the

flash loan together with flash loan interest. The remain-

ing profit lies with the liquidator. If the liquidation is

not profitable, the flash loan would not succeed.

To understand to what degree liquidators engage in flash

loans, we study the flash loan pools of Aave and dYdX (which

also act as lending pools). We therefore filter the relevant

events in the liquidation transactions that apply to flash

loans. For our observation window, we observe a total of 623

flash loans, that are borrowed for liquidations. The accumu-

lative flash loan amount lent sums up to 483.83M USD. We

summarize further details in Table 4. In the table, we include

the flash loans that are borrowed before and repaid after liq-

uidation. We notice that in terms of accumulative amounts,

dYdX flash loans are more popular than Aave, likely due to

the low interest rate of dYdX flash loans.

4.5 Instabilities
In this section, we discuss the lending platform instabilities

due to cryptocurrency price fluctuations.

Table 4: Flash loan usages for liquidations.

Liquidation
Platform

Flash Loan
Platform Flash Loans Accumulative

Amount

Aave V1 dYdX 320 93.57M USD

Aave V2

Aave V2 61 1.27M USD

dYdX 97 317.29M USD

Compound

Aave V1 114 32.49K USD

dYdX 31 71.67M USD

4.5.1 Liquidation Sensitivity. To understand how the lend-

ing platforms respond to price declines of different curren-

cies, we quantify the liquidation sensitivity, i.e., the amount

of collateral that would be liquidated, if the price of the col-

lateral would decline by up to 100%. We again capture Aave

V2, Compound, MakerDAO, and dYdX in the snapshot state

at block 12344944
3
to provide an exhaustive understanding

of borrower risk profiles.

We detail how we measure the liquidation sensitivity in

Algorithm 1. Specifically, we examine whether each debt be-

comes liquidatable because of the price decline of the given

cryptocurrency. Note that when counting the liquidatable col-

lateral value, we consider the value decrease due to the price

decline. We then present the sensitivity results in Figure 7.

We find that all of the four lending platforms are sensitive to

the price decline of ETH. For example, an immediate 43% de-

cline of the ETH price (analogous to the ETH price decline on

the 13th of March, 2020), would result in up to 1.07B USD col-

lateral to become liquidatable onMakerDAO. To our surprise,

although Aave V2 and Compound follow similar liquidation

mechanisms and have similar TVL, Aave V2 is more stable to

price declines in terms of liquidatable collateral. By manually

inspecting, we find that this is because Aave V2 users prefer

adopting a multiple-cryptocurreny collateral. Hence, the po-

sitions in Aave V2 are less likely to become liquidatable due

to the price decline of a single cryptocurrency.

4.5.2 Stability of Stablecoins. We observe that certain bor-

rowers collateralize one stablecoin and borrow another sta-

blecoin. Through such strategy, a borrower reduces the like-

lihood of liquidations, because the prices of stablecoins are

deemed stable (cf. Section 2.1.3). To measure the stability of

this stablecoin borrowing strategy, we collect the prices of

three popular stablecoins, DAI, USDC, and USDT, reported

by the price oracle Chainlink [31], from block 9976964 (May-

01-2020) to 12344944 (Apr-30-2021).We find that the price dif-

ferences among the three stablecoins is within 5% in 99.97%

of the measured 2,367,981 blocks (1 year). This indicates

3
We ignore Aave V1 in the sensitivity measurement because the majority of

the liquidity of Aave V1 had been migrated to Aave V2 at block 12344944.
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Figure 7: Liquidation sensitivity to price decline in four lending platforms. Liquidation sensitivity denotes the
amount of collateral that would be liquidated, if the price of the collateral would decline by up to 100%. We find
that all of the four lending platforms are sensitive to the price decline of ETH. Although Aave V2 and Compound
follow similar liquidation mechanisms and have similar TVL, Aave V2 is more stable to price declines.

that the aforementioned stablecoin borrowing strategy could

have been stable for most of the time in 2020. However, we

remark that liquidation risks still remain. The maximum

price difference we detect is 11.1% between USDC and DAI

at block 10578280.

4.6 Remarks
Our measurements and analysis provide the following in-

sights on DeFi liquidation mechanisms.

(1) Existing liquidation mechanisms generate remarkable

financial rewards for liquidators (cf. Section 4.3.1). Liq-

uidators are well incentivized to actively perform liqui-

dations. This is confirmed by the severe gas price compe-

tition among liquidation transactions (cf. Section 4.3.2)

and short bid intervals in auction liquidations (cf. Sec-

tion 4.3.3). However, the fixed spread liquidation allows

liquidators to over-liquidate a borrowing position, which

incurs unnecessary losses to the borrowers (cf. Section 4.4.1).

(2) Excessive transaction fees necessarily lead to unprof-

itable liquidation opportunities and Type II bad debt.

Overdue liquidations increase the likelihood of Type I

bad debt (cf. Section 4.4.2 and Section 4.4.3).

(3) Fixed spread liquidators can use flash loans to eliminate

the risk of holding a specific asset (cf. Section 4.4.4). Auc-

tion liquidators are exposed to the risk of price fluctu-

ations during auctions, and may hence suffer a loss (cf.

Appendix A).

(4) We show that at the time of writing, the studied lend-

ing platforms in this work (Aave V2, Compound, dYdX,

and MakerDAO) are sensitive (i.e., the amount of the

liquidatable collateral due to the price decline of a cryp-

tocurrency) to the price decline of ETH (cf. Section 4.5.1).
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Algorithm 1: Sensitivity measurement algorithm.

Input :Target currency ℭ; Price decline percentage 𝑑%;

The set of borrowers {B𝑖 };
Output :Liquidatable collateral LC;

Function Col(B, 𝑐):
return The value of collateral in currency 𝑐 owned by B;

end

Function Debt(B, 𝑐):
return The value of debt in currency 𝑐 owed by B;

end

LC← 0;

foreach B ∈ {B𝑖 } do
if B owns collateral in currency ℭ then

// The collateral value of B
// after the price decline

C← ∑
𝑐Col(B, 𝑐)−Col(B, ℭ)×𝑑%;

// The borrowing capacity of B
// after the price decline

BC← ∑
𝑐Col(B, 𝑐)×LT𝑐−Col(B, ℭ)×LTℭ × 𝑑%;

// The debt value of B
// after the price decline

D← ∑
𝑐Debt(B, 𝑐);

if B owes debt in currency ℭ then
D← D−Debt(B, ℭ)×𝑑%;

end
if BC < D then

LC← LC + C;
end

end
end
return LC;

(5) We evaluate the lending and borrowing practice when

focussing exclusively on stablecoins. We show that such

strategy mitigates the risk of liquidations for most of the

time, while liquidations can still occur (cf. Section 4.5.2).

5 TOWARDS BETTER LIQUIDATION
MECHANISMS

In this section, we objectively compare the studied liquida-

tion mechanisms and present an optimal fixed spread liqui-

dation strategy that aggravates the loss of borrowers.

5.1 Objectively Comparing Liquidation
Mechanisms

Defining the optimality of a liquidation mechanism is chal-

lenging, because a liquidation process is a zero-sum game:

the liquidator wins, what the borrower loses. As such, we

can rather quantitatively reason about which liquidation

mechanism is likely advantageous to a liquidator, or to a

borrower.

Based on our empirical data, we proceed by comparing

the aforementioned liquidation mechanisms. We define the

monthly profit-volume ratio as the ratio between the monthly

accumulated liquidation profit and the monthly average col-

lateral volume. To avoid that our results are biased by the

asset price fluctuations of different cryptocurrencies, we

only study the liquidations repaid in DAI and collateralized

in ETH, which are available across all the studied lending

platforms. We present the monthly profit-volume ratios of

the four platforms from November, 2019 to April, 2021 in

Figure 8.

Our results show that dYdX has a higher profit-volume

ratio than the other four platforms, meaning that dYdX is

in expectation favorable to liquidators and worse for bor-

rowers. This observation matches the fact that dYdX does

not set a close factor, which means that a debt can be fully

liquidated once its health factor declines below 1. We further

observe that MakerDAO consistently shows a smaller ratio

than Compound, except for the outlier in March, 2020 (cf.

Section 4). Surprisingly, while Aave follows the same liqui-

dation mechanism of Compound, the profit-volume ratio of

Aave, especially Aave V1, remains below Compound. We in-

fer that this is because the number of DAI/ETH liquidations

events on Aave are rare (cf. Table 8, Appendix B) — we hence

believe that the Aave market is not sufficiently indicative to

draw a representative conclusion. Overall our results suggest

that the auction mechanism favors the borrowers more than

a fixed spread liquidation with a close factor beyond 50%.

5.2 Optimal Fixed Spread Liquidation
Strategy

The configuration of a close factor (cf. Section 2.2) restricts

the profit of the liquidator (i.e., the loss of the borrower) in

a single fixed spread liquidation. We denote the strategy of

liquidating up to the close factor limit within a single liquida-

tion as the up-to-close-factor strategy. Intuitively, a liquidator
is rational to perform the up-to-close-factor strategy, because

the profit is positively correlated to the liquidation amount.

However, we find that a liquidator can lift the restriction of

the close factor by performing two successive liquidations.

The optimal strategy leverages the rule that a position re-

mains liquidatable as long as it is in an unhealthy state, no

matter this position has been liquidated or not previously.

In this optimal strategy, instead of pushing to close factor

limit, the liquidator liquidates as much as possible but still

keeps the position in an unhealthy state in the first liquida-

tion. Then, in the second liquidation, the liquidator liquidates

the remaining collateral up to the close factor. We detail the

optimal fixed spread liquidation strategy in Algorithm 2.
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Figure 8: Comparison of the monthly liquidation profit over the monthly average collateral volume for the
DAI/ETH lending markets. The lower the profit-volume ratio is, the better the liquidation protocol is for bor-
rower.

Algorithm 2: Optimal fixed spread liquidation strategy.

Input :A liquidatable position POS = ⟨𝐶, 𝐷⟩, where 𝐶
represents the collateral value, while 𝐷 represents

the debt value; Liquidation threshold LT;
Liquidation spread LS; Close factor CF.

Output :Amount of debt to repay in the two optimal

successive liquidations, 𝑟𝑒𝑝𝑎𝑦1 and 𝑟𝑒𝑝𝑎𝑦2.

Function Liquidatable(POS):
return POS.𝐶×LTPOS.𝐷 > 1;

end

Function Liquidate(POS, 𝑟𝑒𝑝𝑎𝑦):
POS′ ← ⟨𝐶 − 𝑟𝑒𝑝𝑎𝑦 × (1 + LS), 𝐷 − 𝑟𝑒𝑝𝑎𝑦⟩;
return POS′;

end

𝑟𝑒𝑝𝑎𝑦1 ← argmax𝑟 Liquidatable(Liquidate(POS, 𝑟));
POS′ ← Liquidate(POS, 𝑟𝑒𝑝𝑎𝑦1);
𝑟𝑒𝑝𝑎𝑦2 ← POS′.𝐷 × CF;

5.2.1 Optimality Analysis. Given a liquidatable borrowing

position with 𝐶 collateral value and 𝐷 debt (cf. Equation 5),

we proceed to analyze the profit of our optimal strategy.

POS = ⟨𝐶, 𝐷⟩ (5)

LT, LS,CR denote the liquidation threshold, liquidation spread

and close factor respectively (cf. Section 2.2).

Following Algorithm 2, the repaid debt amounts in the

two successive liquidations are given in Equation 6 and 7.

Note that the𝐷−LT ·𝐶 > 0 because POS is liquidatable (i.e.,

the debt is greater than the borrowing capacity). We show

in Appendix C that a reasonable fixed spread liquidation

configuration satisfies 1 − LT(1 + LS) > 0.

𝑟𝑒𝑝𝑎𝑦1 = argmax𝑟

LT(𝐶 − 𝑟 (1 + LS))
𝐷 − 𝑟 ≥ 1

=
𝐷 − LT ·𝐶

1 − LT(1 + LS)

(6)

𝑟𝑒𝑝𝑎𝑦2 = CF (𝐷 − 𝑟𝑒𝑝𝑎𝑦1) = CF
(
𝐷 − 𝐷 − LT ·𝐶

1 − LT(1 + LS)

)
(7)

The overall profit of the two liquidations is shown in Equa-

tion 8.

𝑝𝑟𝑜 𝑓 𝑖𝑡𝑜 = (𝑟𝑒𝑝𝑎𝑦1 + 𝑟𝑒𝑝𝑎𝑦2) × LS

= LS · CF · 𝐷 + LS(1 − CF)
(

𝐷 − LT ·𝐶
1 − LT(1 + LS)

)
(8)

If the liquidator instead chooses to perform the up-to-

close-factor strategy, the repay amount is CF · 𝐷 and the

profit hence is 𝑝𝑟𝑜 𝑓 𝑖𝑡𝑐 = LS · CF · 𝐷 . Therefore, the optimal

strategy can yield more profit than the up-to-close-factor

strategy. The increase rate of the liquidation profit is shown

in Equation 9.

Δ𝑅𝑝𝑟𝑜 𝑓 𝑖𝑡 =
𝑝𝑟𝑜 𝑓 𝑖𝑡𝑜 − 𝑝𝑟𝑜 𝑓 𝑖𝑡𝑐

𝑝𝑟𝑜 𝑓 𝑖𝑡𝑐
=

CF
1 − CF ·

1 − LT · CR
1 − LT(1 + LS)

(9)

where CR = 𝐶
𝐷
is the collateralization ratio (cf. Section 2.2).

We notice that the optimal strategy is more effective when

CR is low.

5.2.2 Case Study. In the following, we study the most prof-

itable fixed spread liquidation transaction (4.04M USD)
4
we

detect and showcase how the optimal fixed spread liqui-

dation strategy increases the profit of a liquidator. In this

4
Transaction hash: 0x53e09adb77d1e3ea593c933a85bd4472371e03da12e3fec

853b5bc7fac50f3e4
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Table 5: Status of the borrowing position (0x909b4437
61bbD7fbB876Ecde71a37E1433f6af6f). Note we ignore
the tiny amount of collateral and debt in USDT that
the borrower owns and owes. The liquidation thresh-
olds (i.e., LT) of DAI and USDC are both 0.75.

Token Collateral Debt Price (USD)

Block 11333036 After Price Update

DAI 108.51M 93.22M 1.08 1.095299

USDC 17.88M 506.64k 1 1

Total Collateral (USD) 135.07M 136.73M

Borrowing Capacity (USD) 101.30M 102.55M

Total Debt (USD) 101.18M 102.61M

Table 6: The depiction of liquidation strategies. At the
time of the original liquidation, the price of DAI is
1.095299 USD/DAI. The close factor is 50%. The optimal
strategy is the most profitable liquidationmechanism
for the liquidator.

Original liquidation
Repay 46.14M USD

Receive 49.83M DAI

Profit 3.69M DAI

Up-to-close-factor strategy
Repay 46.61M DAI

Receive 50.34M DAI

Profit 3.73M DAI

Optimal strategy

Liquidation 1 Liquidation 2

Repay 296.61K DAI

Receive 320.34K DAI

Profit 23.73K DAI

Repay 46.46M DAI

Receive 50.18M DAI

Profit 3.72M DAI

Compound liquidation, the liquidator first performs an oracle

price update
5
, which renders a borrowing position liquidat-

able. The liquidator then liquidates the position within the

same transaction. In Table 5, we present the status change of

the position following the price update. Before the price up-

date (block 11333036), the position owns a total collateral of

135.07M USD (with a borrowing capacity of 101.30M USD),

and owes a debt of 101.18M USD. After the price of DAI

increases from 1.08 to 1.095299 USD/DAI, the total debt

reaches 102.61M USD, while the borrowing capacity is only

102.55M USD. The health factor drops below 1, and hence

the position becomes available for liquidation.

5
Compound allows any entity to update the price oracle with authenticated

messages signed by, for example, off-chain price sources.

To evaluate the up-to-close-factor strategy and our opti-

mal liquidation strategy, we implement the original liquida-

tion and the two liquidation strategies
6
in Solidity v0.8.4

7
.

We execute them on the corresponding blockchain states
8

and present the results in Table 6. We find that the optimal

strategy is superior to the up-to-close-factor strategy and

can generate an additional profit of 49.26K DAI (53.96K USD)

compared to the original liquidation.

6 RELATEDWORK

Blockchains and DeFi: There is a growing body of litera-

ture on blockchains and DeFi. Qin et al. [28] study flash loan

attacks and present an optimization approach to maximize

the profit of DeFi attacks. Zhou et al. [37] analyze sandwich
attacks in decentralized exchanges. Eskandari et al. [17] pro-
vide an overview of the blockchain front-running attacks.

Daian et al. [13] investigate the front-running attacks in

decentralized exchanges and propose the concept of Miner
Extractable Value (MEV), a financial revenue miners can ex-

tract through transaction order manipulation. Qin et al. [27]
quantify the extracted MEV on the Ethereum blockchain,

including fixed spread liquidations, and present a general-

ized front-running algorithm, transaction replay. Zhou et
al. [36] propose a framework called DeFiPoser that allows

to automatically create profit-generating transactions given

the blockchain state.

Blockchain Borrowing and Lending Markets: Darlin et
al. [14] study the MakerDAO liquidation auctions. The au-

thors optimize the costs for participating in the auctions

and find that most auctions conclude at higher than optimal

prices. The work appears real-world relevant, as it considers

the transaction fees, conversion costs and cost of capital, yet

it does not consider potential gas bidding contests by the end

of MakerDAO auctions [13]. Kao et al. [22] and ZenGo [35]

are to our knowledge the first to have investigated Com-

pound’s liquidation mechanism (the third biggest lending

protocol in terms of USD at the time of writing). Perez et
al. [26] follow up with a report that focuses on additional

on-chain analytics of the Compound protocol. DragonFly Re-

search provides a blog post [15] about the liquidator profits

on Compound, dYdX and MakerDAO. Minimizing financial

deposit amounts in cryptoeconomic protocols, while main-

taining the same level of security is studied in Balance [20].

6
We host the smart contract code anonymously at https://anonymous.4ope

n.science/r/An-Empirical-Study-of-DeFi-Liquidations-Anonymous/Co

mpoundLiquidationCaseStudy.sol.

7
https://docs.soliditylang.org/en/v0.8.4/

8
We fork the Ethereum mainchain locally from block 11333036 and apply

all the transactions executed prior to the original liquidation transaction in

block 11333037. We then execute the liquidation strategies to ensure that

they are validated on the exact same state of the original liquidation.
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Liquidations in Traditional Finance: Liquidations are es-
sential to traditional finance (TradFi) and are well studied

in the related literature [5, 7, 29, 30, 32]. We remark that

liquidations in blockchain systems are fundamentally differ-

ent from those in TradFi in terms of high-level designs and

settlement mechanisms.

7 CONCLUSION
Due to their significant volatility when compared to alterna-

tive financial vehicles cryptocurrencies are attracting spec-

ulators. Furthermore, because speculators seek to further

their risk exposure, non-custodial lending and borrowing

protocols on blockchains are thriving. The risks of borrow-

ing, however, manifests themselves in the form of liquidation

profits claimed by liquidators.

In this paper we study the lending platforms that capture

85% of the blockchain lending market. We systematize the

most prevalent liquidation mechanisms and find that many

liquidations sell excessive amounts of borrower’s collateral.

In this work we provide extensive data analytics covering

over 2 years the prevalent 4 lending protocols. We system-

atize their respective liquidation mechanisms and show that

most liquidation systems are unfavorable to the borrowers.

We finally show an optimal liquidation strategy which we

have not yet observed in the wild.
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A POST-LIQUIDATION PRICE
MOVEMENT MEASUREMENT

Auction liquidators are exposed to the risk that the price of

collateral further declines during the auction, which may

cause a loss to the liquidator. In the following, we study

the price movement of collateral with respect to the debt

currency after the settlement of a fixed spread liquidation

and after the initiation of an auction liquidation. For each

observed liquidation, we record the block-by-block oracle

prices for a duration of 1,440 blocks, which corresponds to

about 6 hours. We summarize the following patterns of the

post-liquidation price movement.

• Horizontal: The collateral price does not change after

liquidation (e.g., the oracle price is not updated).

• Rise: Within 1,440 blocks, the collateral price remains

higher than the liquidation price.

• Fall: Within 1,440 blocks, the collateral price remains

lower than the liquidation price.

• Rise-Fall Within 1,440 blocks, the collateral price first

rises beyond the liquidation price, then falls below the

liquidation price.

• Fall-RiseWithin 1,440 blocks, the collateral price declines

below the liquidation price, and then rises above the liqui-

dation price.

• Rise-Fluctuation:Within 1,440 blocks, the collateral price

first rises beyond, then declines below the liquidation price,

and repeats such movement more than twice.

• Fall-Fluctuation:Within 1,440 blocks, the collateral price

first declines below, then rises beyond the liquidation price,

and repeats such movement more than twice.

We observe that the collateral price remains below the

liquidation price by the end of the observation window for

only 19.07% of the 28,138 observed liquidations. If those

liquidations would have been conducted through an auction,

the liquidator might have suffered a loss.

Table 7: Observed collateral price movements, mea-
sured in relation to the liquidation price.

Price Movement Liquidations Maximum Price Minimum Price

Horizontal 789 - -

Rise 6,142 7.33% ± 7.26% -

Fall 5,365 - −6.70% ± 6.50%
Rise-Fall 2,142 1.46% ± 1.38% −8.35% ± 7.90%
Fall-Rise 4,513 5.70% ± 5.78% −3.14% ± 4.70%
Rise-Fluctuation 4,582 7.85% ± 7.80% −4.52% ± 4.73%
Fall-Fluctuation 4,605 3.49% ± 4.66% −5.07% ± 5.86%

B MONTHLY DAI/ETH LIQUIDATIONS
In Table 8, we show the number of monthly liquidations

that are repaid in DAI and collateralized in ETH on Aave V1,

Aave V2, Compound, dYdX, and MakerDAO.

Table 8: Number of monthly liquidations for the
DAI/ETH lending markets to compare the five plat-
forms on Figure 8.

Year-Month Number of Liquidations

Aave V1 Aave V2 Compound dYdX MakerDAO

2019-11 0 0 0 0 119

2019-12 0 0 29 203 118

2020-01 0 0 21 25 12

2020-02 7 0 63 467 105

2020-03 31 0 712 1124 4222

2020-04 1 0 27 57 9

2020-05 7 0 29 241 24

2020-06 7 0 24 127 45

2020-07 6 0 22 0 20

2020-08 9 0 37 98 42

2020-09 25 0 99 192 105

2020-10 2 0 16 39 11

2020-11 8 0 95 144 31

2020-12 6 1 23 226 20

2021-01 22 20 76 570 62

2021-02 13 41 108 334 246

2021-03 2 10 15 58 11

2021-04 5 16 33 28 212

C REASONABLE FIXED SPREAD
LIQUIDATION CONFIGURATIONS

In the following, we analyze reasonable configurations of the

liquidation threshold LT and the liquidation spread LS (cf.
Section 2). We assume a borrowing position POS = ⟨𝐶, 𝐷⟩,
where 𝐶 is the value of the collateral while 𝐷 is the value

of the debt. We consider the situation that the health factor

of POS drops below 1 (cf. Equation 10), i.e., POS becomes

liquidatable.

HF =
𝐶 · LT
𝐷

< 1 (10)
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A liquidator then liquidates POS by repaying a debt of 𝑟 .

In return the liquidator receives a collateral of 𝑟 · (1 + LS).
After the liquidation, the health factor becomes Equation 11.

HF′ =
(𝐶 − 𝑟 · (1 + LS))LT

𝐷 − 𝑟 (11)

Ideally, a liquidation should help to increase the health

factor of a borrowing position (cf. Equation 12).

HF′ > HF (12)

Following Equation 10, 11, and 12, we obtain Equation 13.

1 + LS <
𝐶

𝐷
(13)

Note that LS is positive. Therefore, when POS is under-

collateralized (i.e.,
𝐶
𝐷

< 1), Equation 13 can never be satisfied.

This implies that a fixed spread liquidation never increase

the health factor of a under-collateralized position.

In the case that POS is over-collateralized (i.e.,
𝐶
𝐷

> 1)

but liquidatable (cf. Equation 10), if we configure LT and

LS satisfying that LT(1 + LS) ≥ 1, this configuration then

conflicts with Equation 13 because following Equation 13 we

obtain Equation 14.

LT(1 + LS) < 𝐶 · LT
𝐷

= HF < 1 (14)

We therefore conclude that 1 − LT(1 + LS) > 0 is the pre-

requisite such that a fixed spread liquidation can increase the

health factor of an over-collateralized liquidatable borrowing

position.
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